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ABSTRACT

A new approach for the solution of
electromagnetic problems is presented and tested.
The method is based of the discretization of
Maxwell’s equations, but it differs from the
FDTD implementation in that it exploits a
different scheme to model wave propagation.
Vector and Scalar potential are used instead of
the magnetic field, to propagate the electric
field. This implementation provides a condensed
node representation for the electric field, offers a
natural way to treat interfaces, and allows to
model Debye relaxation media, avoiding
convolution. Additionally a mechanical analog
can be devised.

1. INTRODUCTION

The Diaz-Fitzgerald Time Domain (D-FTD)
technique is based on the discretization of
Maxwell’s Equations via the introduction of
scalar and vector potential. If space is
discretized, the time evolution of electric and
magnetic field in each mesh position can be
correctly described by a leap-frogging scheme
between the electric field and the vector
potential. The formulation presented here differs
substantially from the one presented by
Leubbers[ll, since in this case the electric field is
accessible at each step of iteration, so it can also
be used to satisfy appropriate boundary
conditions. For the general 3-D case the coupled
equations between Electric Field, Vector
Potential and Scalar Potential[2] are :
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A suitable discretiziition scheme must be chosen
in order to obtain a stable approximation.
Typically in EM problems, the central difference
scheme leads to stable discretizations: this
approach is pursued. Excitation of the system is
done as in other time domain methods an electric
field pulse is set, and within a single run of the
code one can obtain information over a wide
spectrum of frequencies. The data obtained from
the pulsed method can be processed using a Fast
Fourier Transform (FFT) or a Discrete Fourier
Transform (DFT).

Z TWO DIMENSICINAL FORMULATION FOR
TM PROBLEMS

m
Let’s consider an EM problem where only Ez, Hx
and Hv exist (TMZ). The set of Equations (1) can
be the~ reduced to:
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Because of the absence of the z-dimension, all the
derivatives with respect to z do not exist.
Furthermore from the iterative scheme it is clear

that, since EX=E
J

=0, necessarily AX=AY=O and

f=O. Only Az is ifferent from zero. As shown in

[3], the Hamiltonian of this system corresponds to
that of an array of spheres with fixed axis of
rotation connected by rubber spheres. A similar
mechanical model was first proposed by
Fitzgerald [4] in 1835 and recently implemented

as a numerical technique by R.Diaz[5]. Notice
that it is not necessary at this point to introduce
the mechanical analogy, but we believe that it
provides a clearer understanding of the details of
the propagation of the field, and it gives further
insight of the quantities involved in the
simulation, especially when complex phenomena
as multiple Debye relaxations are present.
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Fig. 1 Array of rigid spheres connected by

rubber spheres

Consider an ordered array (for clarity only one
line is shown) of spheres connected to each other
with small rubber spheres as described in Figure
1. Each sphere is connected to the four neighbor
spheres by rubber spheres which are assumed not
to slip. The rotational motion of the pulley in
position (irj) is therefore coupled to the motion of
the spheres (i-l,j), (i+l,j), (i,j-1 ) and (i,j+l ). In
fact the sphere (i,j) with moment of inertia I(i,j)
is free to rotate around the z-axis with angular
velocity @ = d8(i,j)/dt,where @(i,j) is the
rotation angle with respect to a common reference
axis. Let the radius of the sphere be a and the
distance from two adjacent spheres be 2a, then a
difference in rotation angle between two adjacent
spheres A 6 generates a tension T = 2kaA0 in
the rubber sphere connecting them. This is
manifested as a tangential force
(FIX,FPX,FIYFPY) on the rigid sphere. Combining
the tensions due to the four neighbors together
with Newton’s second law T = Ia where

a = ~m/~t, and discretizing in time[5] we

therefore obtain

k a’,.,
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al:’ = m~, + a~,& (4)

e;;’ =q“,+u:;’tif (5)

where the superscript n indicates the time-step.
Note that in this model both the moment of
inertia Ii,j and the rubber band force constant ki,j
depend on the particular pulley. If we identify
the dielectric constant with some kind of
“electric mass” of the sphere, and the magnetic
permeability with some kind of “rubber
elasticity”, we can write

{

I=&

k=p-l

a = (&)-l

(6)

so that the quantity ka2/I becomes ~/As2Ep

and we can substitute ]E/]t,E,A with a, a, 8 to
complete the analogy.

Since we have a handle on the electric field, all
the absorbing boundary conditions devised for
FDTD technique, involving E, can be
implemented here too, with no additional effort.
One difference between the FDTD and the D-FTD
technique, is the treatment of the metal
boundary. In the FDTD code the tangential
component of the electric field has to be set to
zero on the last two layers of the computational
grid in the metal, while in the D-FTD it is
sufficient to use only one layer.

3. LOSSY MATERIAL FORMULATION

In a real medium where & # ~0 we simply
increase the moment of inertia of the pulleys,
while a dielectric lossy material can be easily
modeled by immersing the spheres in a viscous
fluid bath, and therefore by adding a viscous
damping term to Equation (4) which becomes.
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It is easy to show that a simple relation exists

between the “viscous” coefficient and the electric
losses y, = cr./ E*&
Now consider a diamagnetic material with no
losses: the implementation can be obtained by

decreasing the rubber-band elasticity ( K * /.tO),

while a diamagnetic Iossy material can be
modeled via introduction of simple friction

In an analogous way it is possible to derive a
simple relation between the friction coefficient
and the magnetic losses y. = a. / gO

4. APPLICATIONS

In this section we present the solution of a typical
eigenvalue problems. A resonator is excited with
an electrical field pulse, and, after steady state
is reached, by means of DFT, the resonances
frequencies are extracted. These are compared
with the exact theoretical values for the m,n
mode calculated from

(9)

where a and b are the linear active dimensions of
the resonator and c is the speed of light. The
excitation electrical field is directed along the z-
axis, therefore the 2-D TM model must be used.
The space is discretized using 33x33 cells; the
dimension of each cell is 2.0.10-4 m. A gaussian
pulse in shape is applied in the geometrical
center of the resonator. The 40 time step pulse
corresponds to a width of 20 psec. This simulation
is time stepped for a long enough time so that a
steady state is reached, typically 8000 steps. The
DFT analysis was performed using 200 points to
represent a span of 80 GHz centered at 50 GHz, to
locate all the excited modes. Results of this
simulation is shown in Fig. 2
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Fig. 2 DFT ~sults for the square resonator

Successively with the same number of points we
center the DF1’ around the fundamental mode
frequency (fl 0) using a span of 0.2 GHz,
corresponding to a resolution of 10-3 GHz. The
computer solution locates the position of the
fundamental mode with an error less than 0.1%.
Particular attention must be used to determine
the actual dimensions of the resonator according
to the location of the x and y components of the
field in the fundamental cell. In the D-FI’D
technique E has a condensed node representation
as shown in Fig. 3,
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Fig. 3 (a) Yee cell field configuration

(b) D-FT’DI field configuration

which differs fronn the FDTD Yee elementary

cell[6], where different components of the same
field are located in different positions within
the cell. The D-FIT) technique offers an intuitive
understanding of the actual width of the active
resonator. Once the metallic boundaries are set
(in the middle of the cell), the resonating cavity
is measured from cell-center to cell-center. This
example confirms the validity of the technique
and also shows that the same accuracy as FDTD
can be obtained u~sing more natural boundary
conditions.
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Several other practical examples will be
presented including applications of the method
in practical highly dispersive materials,
microstrip lines and scattering from composite
objects.

5. CONCLUSIONS

A new way of solving electromagnetic problems
using a time domain technique has been
presented. Validation of results has been tested
on a selected canonical two dimension
electromagnetical problem. Introduction of
mechanical analogies, as presented by R.Diaz[51,
is exploited in the TM case. Thanks to the
condensed node representation of the electric
field the use of this new approach allows the
implementation of natural boundary conditions
for the treatment of metal and dielectric
interfaces.
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